

Performance Assessments for EnergySolutions: History and Concepts

Loren Morton
Utah Division of Radiation Control
(Imorton@utah.gov)

Ν

EnergySolutions (ES) – Clive, UT

(~70 mi West of Salt Lake City)

ES Disposal Cells

- <u>Uranium / Thorium Tailings</u>:
 - Vitro
 - 11e.(2)
- Low-Level Radioactive Waste (LLRW)
 - •I ARW
 - Class A
 - Class A North
- Mixed Waste (LLRW + EPA RCRA)

Photo: http://www.energysolutions.com/media-center

Performance Assessment (PA) Considerations – early 1990's

- LLRW defined by what it is NOT
 - **NOT** (10 CFR 61.2):
 - High Level Radioactive Waste
 - Transuranic (TU) Waste (heavier than uranium)
 - Spent Nuclear Fuel
 - By-product material (e.g. uranium tailings)
 - Special Nuclear Material (fuel)
 - Uranium Ore
 - IS: catch all for everything else

- Waste Classification: NRC / DRC Rules similar
 - Class B & C Definitions [10 CFR 61.55(a)(3)]
 - Basis #1: Half-Life (long-lived isotopes, Table 1)
 - C-14, Ni-59, Nb-94, Tc-99, I-129, Pu-241, Cm-242
 - Alpha emitting transuranics (TU), half-life > 5 years
 - Radium-226 (Utah rule only)
 - Basis #2: Concentration (short-lived isotopes, Table 2)
 - Class A Waste = catch-all
 - By default » all other LLRW

Note: uranium not defined as Class B / C

PA Cor

- By-Product Material: Uranium / Thorium Recovery
 - Tailings
 - Mill Feed = ore / geologic deposits (usually)
 - Daughters?
 - Fully in-grown (over geologic time)
 - Ra-226 = modern radon hazard
 - NRC Rules (10 CFR 40, Appendix A)
 - No PA Required
 - Engineering Design Standard: Earthen Covers [Criterion 6(1)]
 - 200 1,000 year stability / durability
 - IRONY?

- Inadvertent Intruder Love Canal
 - NRC Rule [10 CFR 61.7(b)(3) and (4)]
 - Protection? » 2 Ways:
 - Institutional Controls after site operations
 - Up to 100 years (ES surety)
 - Engineered Barriers (EB) NRC
 - Class A and B Waste: EB not required
 - Class C Waste: EB may be required
 - EB Effective Life: should be 500 years (if required)
 - Burial Depth Option: no EB required if waste is ≥ 5 meters below top of cover [10 CFR 61.52(a)(2)]

- Primary Waste Containment / Control
 - Engineered Features examples:
 - Site Selection gentle / flat topography
 - Waste form / package @ disposal
 - Steel drums, concrete vaults, etc
 - Embankment cover / liner design e.g.
 - Erosion resistance
 - Infiltration control
 - Minimize leachate generation
 - Radon gas control
 - Seismic resistance
 - Site Drainage free flowing conditions

- Secondary Waste Containment / Control
 - Site Characteristics examples:
 - Remote location (few receptors)
 - Arid / Flat site (low erosion hazard)
 - Low seismic hazard (or appropriate design)
 - Limited Water Resources (availability / quality)
 - Long travel distance / time (to receptors)
 - Low velocity (advection)
 - Contaminant diffusion / dispersion
 - Soil / aquifer partitioning (K_d) [retardation]
 - Half-life (additional decay)

DRC Period of Performance - 500 yrs

Largely based on:

- Remote Location (few receptors)
- Arid site (limited erosion & surface / ground water resources)
- LLRW Class C EB Effective Life (500 yrs)
- Uranium Tailings Design Standard (200 1,000 yrs)
- Site Characteristics = safety factor
 - Multiple redundant and conservative factors in models
 - Pose additional reduction in future dose if / when engineered controls fail

PA Considerations

- early 1990's

Remote / Arid Location

- Near Salt Flats (few receptors)
- Limited water resources
 - Little Surface Water
 - Saline Groundwater (GW)[Class IV]
- Long Travel Time
 - To Great Salt Lake
 - Low GW velocity

Landsat Image: http://earth.gis.usu.edu/landcover.html

Great Basin Watershed (sub-basins)

- Bear River
- West Desert
- Sevier River*
- GSL / Salt Flats= sink
- * Groundwater in the Sevier River sub-basin drains to GSL

http://water.usgs.gov/wsc/reg/16.html

Average Precipitation*

- **Wasatch Front**
 - 10 15 in/yr
- West Desert
 - 5 10 in/yr
- Clive⁽¹⁾ (1993 2009)
 - ∼ 8 in/yr
- Wendover⁽²⁾ (1911 2010)
 - 4.6 in/yr
- 2/22/10 ES Report (1)
- http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?ut9382

* Map= 1961 - 1990, found @ http://www.nationalatlas.gov/printable/precipitation.html#list

Performance Assessment Possible Pathways

From NUREG/CR-6937, Fig. 1.1

Location	Pathway	Description	Finding	Basis / Reasons
On-site	Inadvertent Intruder	Basement Excavation	Unlikely	Human habitation unlikely in future
				Arid site (~ 8 in/yr precipitation)
		۳, "		Saline soil / water (for 1,000's of years)
				Better habitats elsewhere in Utah

Location	Pathway	Description	Finding	Basis / Reasons
Off-site	Dust	Exposed	Unlikely	Human habitation unlikely in
	Inhalation	Waste		future, see above
				Armored cover system (erosion resistant, PMP)
				Cover & embankment = seismically robust
				No flowing streams nearby
				Flat topography – low erosion
				potential

Location	Pathway	Description	Finding	Basis / Reasons
Off-site	Radon Inhalation	Outdoor Air	Unlikely	Radon Barrier – adequate engineering design
				Armored cover system (erosion resistant, PMP)
				Cover & embankment = seismically robust
				Cover system design: minimize bio-intrusion
				No residents expected
		Indoor Air	Unlikely	Human habitation unlikely in future, see above
				Other reasons, see above.

11/9/10

Location	Pathway	Description	Finding	Basis / Reasons
Off-site	Ingestion:	Groundwater	Unlikely	Poor quality GW - saline
	Drinking Water			Site Total Dissolved Solids (TDS) ~ 30,000 – 60,000 mg/l
				Seawater ~ 30,000 mg/l
				Utah Drinking Water MCL: TDS = 2,000 mg/l [UAC R309-200-5(1)]
				Better water resources elsewhere in Utah

Location	Pathway	Description	Finding	Basis / Reasons
Off-site	Ingestion: Drinking Water	Surface Water	Unlikely	Arid site – little / no flowing or standing surface water
				Saline soils / water
				Better water resources elsewhere in Utah
	Ingestion:	Meat	Unlikely	Little / no surface water
	Fish	F.)		
		# (E)		No aquatic habitat
		I I		No freshwater resources

Location	Pathway	Description	Finding	Basis / Reasons
Off-site	Ingestion: Plants	Crops Grown	Unlikely	Saline soil / water resources
				Better agriculture areas elsewhere in Utah
	Ingestion: Livestock	Meat and Milk	Unlikely	Saline soils / water
				Feed / water would be imported – increased costs
				Better agriculture areas elsewhere in Utah

DRC PA Decision - early 1990's

- Critical Pathway: Groundwater
 - Protect as if drinking water
 - Points of Compliance
 - Pre-1998 = Water Table
 - Post-1998 = On-site Well, inside buffer zone
 - Apply Utah Groundwater Quality Standards (UAC R317-6-2)
 - Radiocontaminants ≥ 500 yrs (4 millrem/yr)
 - Nonradiologics ≥ 200 yrs (UT Drinking Water MCLs)

ES Performance Assessment – 1990s

1

ES Performance Assessment – 1990s

- Conservative Inputs / Assumptions examples
 - Remote location
 - Arid site
 - Low GW velocity / long travel times
 - Point of Compliance (90 ft well)
 - GW = drinking water (assumed)
 - 4 millirem/yr (NRC = 25 / 75 /25 all pathways)
 - Soil / Aquifer Kds
 - Pre-1998 = literature lows
 - Post-1998 = lab tests on Clive soil / GW
 - 2-D Model (quasi 2-D)
 - Waste Leaching Coefficients = soil Kd values